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ABSTRACT

In this article, the authors propose a maximum flow algorithm based on flow matrix. The algorithm 
only requires the effort to reduce the capacity of the underutilized arcs to that of the respective flow. 
The optimality of the algorithm is proved by the max-flow min-cut theorem. The algorithm is table-
based, thus avoiding augmenting path and residual network concepts. The authors used numerical 
examples and computational comparisons to demonstrate the efficiency of the algorithm. These 
examples and comparisons revealed that the proposed algorithm is capable of computing exact 
solutions while using few iterations as compared to some existing algorithms.
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INTRODUCION

The maximum flow problem is a network-based problem, whose objective is to determine the 
maximum amount of units that can pass through a network. All links in the network have capacity 
restrictions. Given a network with given capacity restrictions on each link, the maximum flow 
problem usually deals with the determination of flow patterns thorough various links in the network, 
so that a maximum flow can arrive at a specified node known as the “destination node” from another 
specified node, known as the “origin,” where the supply in unlimited. Ahmed et al. (2013), Kaml 
(2017), Munapo et al. (2021), Sarukhi et al. (2017), and Yuan et al. (2010), among others, tackled 
this problem. The maximum flow network can be directed or non-directed; water networks and road 
networks are examples of nondirected and directed networks, respectively.

The maximum flow problem has many applications, which include maximizing movement of 
water from dams, rivers, and boreholes to treatment sites, and then from treatment sites to residents. 
The maximum flow problem can be used to determine congestion points in urban road networks that 
require road expansion, so as to minimize congestion and delays. Also, the maximum flow problem 
is one of the network-based combinatorial optimization problems that requires the development of 
algorithms and heuristics to determine the maximum flow value in any given network. Researchers 

https://orcid.org/0000-0003-2665-9711


International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

2

have been developing methods to solve maximum flow problems using concepts based on augmenting 
path, maximum flow – minimum cut theorem, and residual networks, among others.

Motivation
The various applications and the complexity of the maximum flow problem have motivated this 
research. The minimum cut theorem is very powerful and helps to determine the maximum flow 
value in any given network. The drawback is that it consumes time to determine all the cuts in the 
network and evaluate them to determine the minimum cut in the set of all possible cuts. Making 
the position of the minimum cut deterministic in any given network has motivated this research. It 
becomes very easy to determine the maximum flow value in any given network when the minimum 
cut position is deterministic. Most algorithms use augmenting paths to determine the maximum flow 
value in a network; however, in this research, the authors exploited other directions to avoid the use 
of augmenting paths and residual network concepts.

This research has the following contributions:

1. 	 The authors developed a new algorithm that is based on the concepts of maximum flow – minimum 
cut theorem. The design of the algorithm is simple; thus, it can be used for teaching purposes 
and without the aid of computer software.

2. 	 The authors proposed table-based maximum flow algorithm concepts, thus avoiding the 
augmenting paths and residual networks. The literature revealed that most of the existing 
algorithms are based on augmenting paths and residual network concepts.

3. 	 The authors proposed two theorems based on the max-flow min-cut theorem. These theorems 
are very useful in making the position of the minimum cut in any given network deterministic. 
The authors also proved their proposed theorems mathematically using max-flow min-cut 
theorem concepts.

This paper is organized in seven sections. The second section presents the literature related to the 
maximum flow problem; the third section presents the proposed algorithm and theorems, definitions 
of related terms, and notations; the fourth section offers numerical results and discussions; The fifth 
and sixth sections report the worst case time complexity of the algorithm and computational results, 
respectively; lastly, the seventh section provides the conclusion and further research suggestions.

LITERATURE REVIEW

Ma et al. (2019) developed maximum flow algorithms using the concepts of dynamic networks 
information to maximize the transmission rate in communication networks. Computational experiments 
have proved 40% increase in throughput and 30% decrease in completion time. Wang (2019) applied 
the maximum flow algorithms to determine the feasibility of foreign trade transformation and 
upgrading for China. More in detail, Wang implemented the maximum flow algorithm to design and 
to improve the China distribution system. This application proved how maximum flow algorithms 
can be used to solve real world challenges. Zhang et al. (2015) presented a maximum-flow-based 
data transmission algorithm for distributed computing systems. Rajalakshmi and Vaidyanathan 
(2019) applied Edmonds-Karp maximum flow algorithm to traffic management system, so as to 
minimize congestion by finding alternative routes and traffic flow regulating. Ahmed et al. (2013) 
introduced lexicographic search technique to obtain exact solutions to the problem of maximum flow 
with minimum attainable cost in a flow network. Their computational experiments revealed that the 
proposed algorithm computes the maximum flow value in any given network in the least time. Their 
research demonstrated that powerful maximum flow algorithm can be developed using borrowed or 
new techniques, thus departing from finding maximum flow using augmenting path and residual path 
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concepts. Gharehbolagh et al. (2016) proposed a maximum flow optimization model that incorporated 
reliability analysis. Application of reliability in maximum flow networks helps the decision makers 
to make better decisions. Khanal et al. (2021) presented a new variant of the maximum flow problem 
named transshipment multicommodity maximum flow problem. In this problem, the maximum flow 
value is dependent on the storage capacity of intermediate nodes in the flow network. Tawanda (2015) 
presented a node merging approach for solving the transshipment flow network problem. Tawanda 
solved the transshipment commodity flow problem as a transportation problem. Munapo et al. (2021) 
developed a new method to determine the maximum flow by route merging concept, thus reducing 
the complexity of the network as iteration increases. Kaml (2017) presented a new approach to solve 
maximum flow problem with fuzzy weights. Indeed, Kaml used numerical examples to demonstrate 
their proposed method. Surakhi et al. (2017) developed a bio-inspired algorithm for determining the 
maximum flow value. The results of their computational experiments revealed that the algorithm 
running time is better when compared to other genetic algorithms. Sivasubramani and Swarup (2011) 
developed an algorithm that deals with the power flow problem and uses multi-objective harmony 
techniques. They compared the simulation results with genetic results and revealed that the algorithm 
is able to compute optimal solutions to the power flow problem. Mohammadi and Tayyebi (2019) 
presented an algorithm to deal with maximum capacity path interdiction problem with fixed costs. They 
proved the accuracy and efficiency of the proposed algorithm using computational experiments based 
on real world data sets. Boykov and Kolmogorov (2004) presented a maximum-flow minimum-cut 
algorithm and used computational experiments to compare their algorithm with existing algorithms. 
Their experiments proved that their algorithm is two to five times faster than Dinic maximum flow 
algorithm and push-relabel maximum flow algorithm. Yuan et al. (2010) developed multiplier-based 
maximum flow algorithms, proved the convergence of their algorithms using optimization theories, 
and presented computational experiments to validate the effectiveness of the proposed algorithms. 
Kobayashi and Otsuki (2014) considered a geographic maximum flow algorithm in a circular disk 
failure model. Their algorithm is polynomial, as a result it is considered a fast algorithm, when 
compared with others. Neumayer et al. (2015) proposed polynomial method, exact algorithm, heuristic 
algorithm, and integer linear programming formulations to solve geographic maximum-flow and 
minimum-cut problem under a circular disk failure model. Several numerical examples demonstrated 
the applicability of their proposed algorithms. Zhang et al. (2023) proposed the available flow neural 
network method to solve the damaged-network time-varying maximal flow problem. A road network in 
New York was used to prove the validity and efficiency of the available flow neural network method. 
Many scientists, mathematicians, engineers, and computer scholars have proposed different methods 
to solve the maximal flow problem and related variants, such as maximum flow problem instance 
space analysis (Alipour et al., 2023), network reconstruction method for maximum flow problem 
(Munapo et al., 2022), poly-logarithmic maximum flows (Cen et al., 2023), maximum flow routing 
strategy (Yang et al., 2023), maximum flow in fuzzy environments (Bavandi & Bigdeli, 2023), and 
multicommodity flow problem (Gupta et al., 2023).

Most of the existing algorithms in the literature use the concepts of augmenting path and residual 
networks. This makes these algorithms complex as well require many iterations to compute the 
maximum flow value. Furthermore, the min-cut max-flow theorem is a very powerful theorem that 
has not been utilized fully to help find the maximum flow value, because it takes time to determine 
the minimum cut in any given network. In this paper, the authors propose a new direction to determine 
the maximum flow value without making use of the augmenting path and the residual networks. The 
authors extended the concept of the min-cut max- flow theorem to make the position of the minimum 
cut in any given network deterministic.

Development of Extreme Min-Cut Max-Flow Algorithm
The concept of extreme min-cut max-flow is based on transforming the original flow network through 
reduction of underutilized arcs, thereby making the position of the minimum cut deterministic and 
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extremely located in the transformed network, thus source and sink extreme. The authors proved the 
correctness of the concept through two proposed theorems, namely, sink extreme and source extreme 
theorems. These theorems facilitate the use of max-flow min-cut theorem, without taking much time 
trying to come up with a set of all possible cuts in any given network. The researchers used flow 
matrix transformations, thus avoiding the augmenting path and residual network concepts.

Terminology
Excess Flow
Excess flow presents stagnant flow in the network when the total pre-node arc capacity is greater 
than the total post-node arc capacity. Excess flow can be defined as the flow that is introduced in 
the network at the source node and fails to reach the sink node due to some arc capacity constraints 
in the network.

Underutilized Arcs
Arcs are said to be underutilized if, and only if, the actual value flowing through them is less than 
their actual flow capacity. This situation arises if, and only if, the total flow value of arcs into v is 
less than the total flow capacity of arcs out of v.

Network Cut
A cut is any line that separates network nodes into two sets, such as set A and B, where s A∈  and 
t B∈ , where s  and t  are the source and sink nodes, respectively. The total capacity of the arcs 
where the cut passes through is exactly equal to the network cut value.

Minimum Network Cut
This is the cut with the least cut value amongst the set of all possible cuts in any given network. 
According to the max-flow min-cut theorem, the value of this cut is exactly equal to the maximum 
flow value.

Flow Matrix
It is a square matrix whose elements are the flow values or weights between all possible flow network 
nodes. For a flow network with V nodes, V V×  is the flow matrix dimension.

Notation
Table 1 gives all the symbols the authors used in their proposed algorithm and the symbol explanations.

Theorems and Proofs
Theorem One: Sink Extreme Min-Cut Theorem

The minimum cut in any network where f v f v v V s t+ −( ) ≥ ( )∀ ∈ −{ }� � ,  is the sink extreme cut. 
The maximum flow in any network without underutilized arcs ( f v f v v V s t+ −( ) ≥ ( )∀ ∈ −{ }� � , )  

is exactly equal to the sum of arcs into the sink ( f t+ ( ) ). 

Case One: All nodes are at equilibrium, thus f v f v v V s t+ −( ) = ( )∀ ∈ −{ }� � , .

Proof: Since all nodes are at equilibrium, the flow introduced at the source node f f s= ( )−  is exactly 
the same amount received at the sink node f f t= ( )+ , thus f f s f t= ( ) = ( )− + . Now, let 
C C

k
= { }  where k = 0, 1, 2, . . , n and where C

0
 and C

n
 are the source and sink extreme cuts. 

Using the max-flow mini-cut theorem, let C C C C C C
o n n

= { }−, , ,.... ,
1 2 1

 be a set of all possible 
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cuts in a network in their order from the source to the sink node, where C f s
0
= ( )−  and 

C f t
n
= ( )+  are the source and sink extreme cuts, respectively. Since all the nodes are at 

equilibrium, Equation 1 holds C C C C C
o n n
= = = =−1 2 1

....  as follows:

Minimum Cut Min= { } =−C C C C C C
n n n0 1 2 1

, , ,..., , 	 (1)

Case Two: The network has either excess flow at all intermediate nodes or a mixture of excess flow 
and equilibrium nodes, thus f v f v v V s t+ −( ) ≥ ( )∀ ∈ −{ }� � , .

Proof: Using the max-flow mini-cut theorem, let C C C C C C
o n n

= { }−, , , . . . . ,
1 2 1

 be a set of all 
possible cuts in a network in their order from the source to the sink node, where C f s

0
= ( )−  

and C f t
n
= ( )+  are the source and sink extreme cuts, respectively. Case Two is possible if, and 

only if, f v f v+ −( ) > ( )  or a combination of f v f v f v f v v V s t+ − + −> = ∀ ∈ −{ }( ) ( ) ( ) ( ) , and . 
Then, the following inequality holds C C C C C

o n n
≥ ≥ ≥ ≥−1 2 1

�.��.��.��.�� . Hence, Equation 2, 
which completes the proof, is as follows: 

Minimum Cut Min= { } =−C C C C C C
n n n0 1 2 1

, , ,..., , 	 (2)

Theorem Two: Source Extreme Min-Cut Theorem

The minimum cut in any network where f v f v v V s t+ −( ) ≤ ( )∀ ∈ −{ }� � , � is the source extreme cut. 

Proof: In this kind of network, all the nodes have post underutilized arcs. The authors made all arcs 
in the network to be utilized fully and created stagnant flow at all the nodes through reversing 
the direction of all the nodes, thus making the source the sink and the sink the source.

Table 1. Symbols used in the extreme min-cut max-flow algorithm

Symbols Explanation

f *
Maximum flow value.

f v+ ( ) Total flow value into vertex v.

f v− ( ) Total flow value out of vertex v .

f s− ( ) Total flow value out of source s.

f t+ ( ) Total flow value into sink t.

RFD Row flow difference.

CFD Column flow difference.

V Set of network nodes.
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Then, the following inequality holds: C C C C C
o n n
≤ ≤ ≤ ≤−1 2 1

....  Hence, Equation 3, which 
completes the proof, is as follows:

Minimum Cut Min= { } =−C C C C C C
n n0 1 2 1 0

, , ,..., , 	 (3)

Steps of the Proposed Algorithm
Algorithm 1 indicates the steps of the proposed algorithm.

NUMERICAL RESULTS AND DISCUSSION

Example One
The authors considered a 6-node network. Nodes 1 and 6 are the source and sink nodes, respectively, 
and nodes 2, 3, 4, and 5 are the intermediate nodes. The objective is to demonstrate how the proposed 
method determines the maximum flow of units that can pass through the network at any given time.

Algorithm 1. Extreme min-cut max-flow algorithm

Step 1: Convert the maximal flow network into an n n  ×  flow matrix.
Step 2: Compute row and column flow totals f v− ( )  and f v+ ( ),  respectively.
Step 3: Calculate row and column flow differences using the following conditions:
a. If f v f v+ −( ) ≥ ( ) , then CFD and RFD are f v f v+ −( )− ( )( )  and 0, respectively.

b. If f v f v+ −( ) < ( ) , then CFD and RFD are 0 and f v f v+ −( )− ( )( ),  respectively.

Step 4: If all CFD RFD� � � �= =0 , then f f s f t* .= ( ) = ( )− +

If all RFD � �=0 , then f f t* = ( )+ .

If all RFD � �<0  and all � � �CFD=0 , then f f s* .= ( )−

Otherwise, if some RFD � �=0  and CFD � �<0 , then update the flow matrix using step 5.
Step 5: Subtraction of negative RFD from respective row entries:
a. When all CFD � �=0 : Consider first the row elements in the sink column, if there is any. 
Otherwise, subtract RFD from the elements in the corresponding row in such a way that (Row 
elements ≥  0) after the subtraction operation.
b. When ∑ <CFD RFD : Consider first the row elements that correspond to CFD > 0  and 
subtract those corresponding to CFD. Next, consider the row element that lies in the sink 
column. Otherwise, consider the row elements with CFD � �=0 . Subtraction of RFD should be in 
such a way that (Row elements ≥  0) after the subtraction operation.
c. When ∑ ≥CFD RFD : Consider only row elements whose CFD � �>0 ; the subtracted value 
should not exceed the respective CFD. 
d. When at least one CFD ≥ RFD : Subtract one row element that has CFD RFD� .≥
Step 6: Repeat steps 2—5 until all RFD = 0.
Step 7: Optimality Conditions: The flow matrix is optimal when all RFD = 0 .
Step 8: Compute f f t* .= ( )+
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Figure 1. Flow chart of the extreme min-cut max-flow algorithm

Figure 2. Maximum flow problem one
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Iteration One: This iteration includes the following steps:
1. 	 Convert the network problem to flow matrix (Table 2).
2. 	 Compute flow matrix totals and respective differences (Table 3). Optimality is not reached, 

yet, since some RFD are negative.
3. 	 Go to the next iteration.

Iteration Two: This iteration includes the following steps:
1. 	 Update the flow matrix by subtracting all the negative RDF (Table 4).
2. 	 Compute flow matrix totals and differences (Table 5).

Since all the RFD are equal to zero, all the underutilized arcs have been reduced and, hence, the 
optimality is reached. Since v =6 is the sink, the maximum flow value can be given by: 

Table 2. Flow matrix

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6

v  = 1 ∞ 8 10 - - -

v  = 2 - ∞ - 2 7 -

v  = 3 - - 12

v  = 4 - - - ∞ - 10

v  = 5 - - - 4 ∞ 8

v  = 6 - - - - - ∞

Table 3. Computed Totals and Differences

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 f v− ( ) RFD

v  = 1 ∞ 8 10 - - - 18 -

v  = 2 - ∞ - 2 7 - 9 0

v  = 3 - 3* ∞ - 12* 15 -5

v  = 4 - - - ∞ - 10* 10 -4

v  = 5 - - - 4 ∞ 8 12 0

v  = 6 - - - - - ∞ -

f v+ ( ) - 11 10 6 19 18

CFD +2 0 0 +7 -

Rows (v = 3 and v = 4) show RFD of -5 and -4, respectively. These negative RFD are supposed to be subtracted from their respective row pivotal ele-
ments. Elements marked with an asterisk (*) are the possible respective pivotal elements.
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Table 4. Updated flow matrix

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6

v  = 1 ∞ 8 10 - - -

v  = 2 - ∞ - 2 7 -

v  = 3 - 3 ∞ - (12 - 5) -

v  = 4 - - - ∞ - (10-4)

v  = 5 - - - 4 ∞ 8

v  = 6 - - - - - ∞

Table 5. Computed totals and differences

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 f v− ( ) RFD

v  = 1 ∞ 8 10 - - - 18 -

v  = 2 - ∞ - 2 7 - 9 0

v  = 3 - 3 ∞ - 7 - 10 0

v  = 4 - - - ∞ - 6 6 0

v  = 5 - - - 4 ∞ 8 12 0

v  = 6 - - - - - ∞ - -

f v+ ( ) - 11 10 6 14 14

CFD - +2 0 0 +2 -

Figure 3. Maximum flow problem two
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f v units+ =( ) = + =6 6 8 14 	

Example Two
The author considered an 8-node network. Nodes 1 and 8 are the source and sink nodes, respectively, 
and nodes 2, 3, 4, 5, 6 and 7 are the intermediate nodes. The objective is to demonstrate how the 
proposed method determines the maximum flow of units that can pass through the network at any 
given time.

Iteration One: This iteration includes the following steps:
1. 	 Convert the network problem to flow matrix (Table 6).
2. 	 Compute flow matrix totals and respective differences (Table 7). Optimality is not reached, 

yet, since some RDF are negative.
3. 	 Go to the next iteration.

Iteration Two: This iteration includes the following steps:
1. 	 Update the flow matrix by subtracting all the negative RFD (Table 8).
2. 	 Compute flow matrix totals and differences (Table 9). Optimality is not reached, yet, since 

some RFD are negative.
3. 	 Go to the next iteration.

Iteration Three: This iteration includes the following steps:
1. 	 Update the flow matrix by subtracting all the negative RFD (Table 10).
2. 	 Compute flow matrix totals and differences (Table 11).

Since all the RFD are equal to zero, all the underutilized arcs have been reduced and, hence, the 
optimality is reached. Since v =8 is the sink, the maximum flow value can be given by:

f v units+ =( ) = + =8 25 8 33 	

Table 6. Flow matrix

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 v  = 7 v  = 8

v  = 1 ∞ 6 20 12 - - - -

v  = 2 - ∞ - 1 - - - -

v  = 3 - - ∞ 8 8 11 - -

v  = 4 - - - ∞ - 16 - -

v  = 5 - - - - ∞ 9 10 -

v  = 6 - - - - - ∞ - 25

v  = 7 - - - - - 6 ∞ 8

v  = 8 - - - - - - - ∞
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ALGORITHM COMPUTATIONAL COMPLEXITY

Computing row and column totals require an effort of 2E , computing column flow differences and 
row flow differences require an effort of 2V . Updating flow matrix requires an effort of E  and 
combining all these efforts we have the following expression 2 2E V E+ + . This expression reduces 
to E V+ . The algorithm requires at most V  iterations to terminate. Time complexity of the algorithm 
is then given by O VE V+( )2  which reduces to O(VE) when E V> .

Table 7. Computed totals and differences

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 v  = 7 v  = 8 f v− ( ) RFD

v  = 1 ∞ 6 20 12 - - - - 38 -

v  = 2 - ∞ - 1 - - - - 1 0

v  = 3 - - ∞ 8* 8* 11* - - 27 -7

v  = 4 - - - ∞ - 16 - - 16 0

v  = 5 - - - - ∞ 9* 10* - 19 -11

v  = 6 - - - - - ∞ - 25 25 0

v  = 7 - - - - - 6* ∞ 8* 14 -4

v  = 8 - - - - - - - ∞ -

f v+ ( ) - 6 20 21 8 42 10 33

CFD +5 0 +5 0 +17 0 -

Table 8. Updated flow matrix

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 v  = 7 v  = 8

v  = 1 ∞ 6 20 12 - - - -

v  = 2 - ∞ - 1 - - - -

v  = 3 - - ∞ (8 - 5) 8 (11 - 2) - -

v  = 4 - - - ∞ - 16 - -

v  = 5 - - - - ∞ (9 - 9) (10 - 2) -

v  = 6 - - - - - ∞ - 25

v  = 7 - - - - - (6 - 4) ∞ 8

v  = 8 - - - - - - - ∞
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COMPUTATIONAL COMPARISONS

Three instances (EX-1, EX-2, and EX-3) are considered for computational comparisons. Two (EX-1 
and EX-2) of these instances see (Mallick et al., 2016) and the third (EX-3) instance see (Dash and 
Rahman, 2019). The proposed algorithm is compared to seven state of the art existing algorithms. 
The algorithms are compared in terms of the solution found, number of iterations and augments. 
Table 12 summarizes the computational comparisons.

Table 10. Updated flow matrix

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 v  = 7 v  = 8

v  = 1 ∞ 6 20 12 - - - -

v  = 2 - ∞ - 1 - - - -

v  = 3 - - ∞ 3 8 9 - -

v  = 4 - - - ∞ - 16 - -

v  = 5 - - - - ∞ 0 8 -

v  = 6 - - - - - ∞ - 25

v  = 7 - - - - - (2 - 2) ∞ 8

v  = 8 - - - - - - - ∞

Table 9. Computed totals and differences

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 v  = 7 v  = 8 f v− ( ) RFD

v  = 1 ∞ 6 20 12 - - - - -

v  = 2 - ∞ - 1 - - - - 1 0

v  = 3 - - ∞ 3 8 9 - - 20 0

v  = 4 - - - ∞ - 16 - - 16 0

v  = 5 - - - - ∞ 0 8 - 8 0

v  = 6 - - - - - ∞ - 25 25 0

v  = 7 - - - - - 2* ∞ 8* 10 -2

v  = 8 - - - - - - - ∞

f v+ ( ) - 6 20 16 8 27 8 33

CFD +5 0 0 0 +2 0
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Table 11. Computed totals and differences

v  = 1 v  = 2 v  = 3 v  = 4 v  = 5 v  = 6 v  = 7 v  = 8 f v− ( ) RFD

v  = 1 ∞ 6 20 12 - - - - - -

v  = 2 - ∞ - 1 - - - - 1 0

v  = 3 - - ∞ 3 8 9 - - 20 0

v  = 4 - - - ∞ - 16 - - 16 0

v  = 5 - - - - ∞ 0 8 - 8 0

v  = 6 - - - - - ∞ - 25 25 0

v  = 7 - - - - - 0 ∞ 8 8 0

v  = 8 - - - - - - - ∞

f v+ ( ) - 6 20 16 8 25 8 33

CFD +5 0 0 0 0 0

Table 12. Computational comparisons

Name of the algorithm
Solution found Number of iterations Number of 

augmentation

EX-1 EX-2 EX-3 EX-1 EX-2 EX-3 EX-1 EX-2 EX-3

Ford-Fulkerson algorithm 
Ford and Fulkerson (1956) 72 19 39 9 6 4 8 5 4

Edmonds-Karp algorithm 
Edmonds and Karp(1972) 72 19 39 7 5 3 7 5 3

An innovative approach 
Md. Al-Amin Khan et al. (2013) 72 19 39 7 5 4 7 5 3

Improved Edmond - Karp 
Chintan J. & Deepak G (2012) 72 19 39 6 4 4 6 3 3

An efficient algorithm 
Ahmed et al. (2014) 72 19 39 6 4 3 6 5 3

Modified Edmonds-Karp algorithm 
Mallick et al. (2016) 72 19 39 4 2 3 6 3 3

Network reconstruction method 
Munapo et al. (2022) 72 19 39 6 3 2 N/A N/A N/A

Extreme Min – cut Max – flow 
algorithm (proposed in this paper) 72 19 39 2 3 3 N/A N/A N/A

Optimal solution 72 19 39
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CONCLUSION

In this paper, the authors presented a new maximum flow algorithm, which is based on a flow matrix. 
The algorithm does not use of augmenting path and residual network concepts, thus making it unique 
from the existing maximum flow algorithm. Further, the authors proposed two theorems that support 
the idea behind the proposed algorithms. The proposed theorems help to make the position of the 
min-cut deterministic, thus reducing computational time in finding the exact min-cut among a set of 
all possible network cuts. In addition, the authors presented numerical examples to demonstrate the 
validity and efficiency of the algorithm. They compared the algorithm with the existing algorithms 
on three small-sized instances. The proposed algorithm computed exact maximum flow values on all 
the three instances. The proposed algorithm terminates after a few numbers of iterations, as compared 
to other algorithms, thus the algorithms performed better than all on instance EX-1, second best on 
instance EX-2, and second best performing algorithm on instance EX-3. Further research requires 
coding of the proposed algorithm, so that computational comparisons using large problem instances 
can be carried out.
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